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Dead zones tend to hold back the downstream travel, to increase the longitudinal 
spreading and to provide a long tail of low concentration for passive contaminant 
releases in natural streams. Here it is shown how the presence of a random 
distribution of dead zones can be accommodated into the method of moments by 
choosing an appropriate composite averaging. The individual roles of the cross-stream 
velocity shear, the dead-zones mean volume fraction and the dead-zones probability 
distribution are clearly revealed in the longitudinal shear-dispersion coefficient. The 
inevitable deviations from Gaussianity are examined by means of skewness and 
kurtosis. Simple examples are used to quantify the effects of the dead zones upon 
contaminant dispersion in Couette flow, pipe and plane Poiseuille flows. 

1. Introduction 
Dead zones are local areas of the flow cross-section with relatively still water or no 

net downstream velocity. These randomly isolated ' dead-water ' regions are caused 
by the meandering nature of streams, debris and encroaching trees and vegetation 
along the sides of streams. The visual observation of non-buoyant tracers used for 
dispersion studies in natural streams indicates that a portion of tracer concentration 
is diffused into and is temporarily detained in the dead zones as the tracer cloud 
passes by, and is gradually released back into the main stream to move downstream 
again (Fischer 1967). A similar feature occurs in estuaries and other embayments 
(Okubo 1973). The dead zones are also found in the river bed where there are many 
roughness elements that provide small spaces for retaining part of the flow (Valentine 
& Wood 1977), and in an industrial pipe line in which stagnant fluid collects in the 
crevices of flanges, or a t  the hollows of a corroded surface. The most significant 
contribution of this temporary storage mechanism on the tracer concentration 
distribution is its production of a low-concentration tail. The resulting skewness is 
much greater than would result from the velocity shear effect alone (Nordin & 
Troutman 1980). 

The complexity of the flow field and of mixing phenomena in natural streams force 
us to investigate an idealized case in which some of the general features of 
contaminant dispersion can be revealed analytically. Turner (1958) visualized a 
model of a flow system consisting of a main channel which has a uniform cross- 
sectional shape and area, through which the fluid flows. Communicating with the 
main channel are dead-end stagnant pockets of prismatic cross-section which are 
distributed uniformly along the length of the channel. There is no bulk flow into and 
out of these pockets and any exchange of contaminant between the main channel and 
stagnant pockets is by diffusion only. (For the purpose of the analysis the term 
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‘pocket’ is used to refer to the geometric feature of the dead zone.) Aris (1959), using 
a generalization of Turner’s model which allows the stagnant pockets to have all 
possible depths opening on the circular channel, has shown how the presence of these 
pockets influences the longitudinal dispersion coefficient D, and noted that 
enhancement of D was related to the distribution of pocket depths, and not merely 
to the mean fraction void volume p, This result has been confirmed by thc 
experimental work of Evans & Kenney (1966), who employed a retentive layer of 
stagnant gas held within a porous solid structure. 

In  the present paper, we generalize and extend Aris’s results. By using an 
appropriate composite cross-sectional averaging, the effect of the probability 
distribution of stagnant-pocket depths can be incorporated into the conventional (no 
pockets) method of moments (Aris 1956). This eliminates the explicit occurrence of 
any pocket-depths probability distribution in the moment equations of the 
contaminant concentration distributions. Encouraged by this observation, wc arc 
able to calculate the first four moments in the presence of stagnant pockets, and to 
analyse the departures of contaminant concentration distributions from Gaussianity . 
Mean concentration distributions have then been calculated from the moments using 
Chatwin’s (1970) Edgeworth series approximation. 

2. Composite cross-sectional averaging 
We shall consider a uniform, symmetric plane parallel flow of width 213; this is only 

for convenience and, in principle, the method can be extended to more general 
geometries (Aris 1956, 55). On the walls of this channel are the open mouths of 
stagnant pockets of various depths. It is assumed that the probability distribution 
of pocket depths does not vary along the channel length and that the longitudinal 
extent of an individual pocket is short compared with the channel diffusion 
lengthscale. The flow system then consists of the main flow with longitudinal velocity 
u ( y )  and the stagnant pockets. There is no flow communicating between these two 
regions so diffusion is the only mechanism of transporting contaminant across their 
interface, i.e. the planes y = 0, y = -2a. By symmetry we can restrict our attention 
to one half of the flow (figure 1). Note that for the linear Couette flow (Appendix A) 
this is the full problem, i.e. the pocket only occupies one side of the flow 
(bottom). 

Valentine & Wood (1977) pointed out that  there are two variables that control the 
role of stagnant pockets on the dispersion process: the area proportion of the wall 
covered by pockets and the (individual) pocket depth. (In rivers these variables may 
be related in some complex manner.) To incorporate these two factors (Aris 1959) we 
assume that the stagnant-pocket depths 131 are distributed with a probability density 
function p(Z). By attributing to  the wall area that is not a pocket mouth a pocket of 
depth zero, we have 

where a = constant is the probability (for each value of z) that there is a pocket of 
that value of x. I n  terms of p(Z), the mean ratio p of the total dead-water volume to 
that of the channel can be defined: 

p(Z) = aP(Z)+(l-a)Cyl), (2.1) 

p = { I }  = JOW dZlp(1) = a/:dZZP(Z). 

Here, the curly brackets denote ensemble averaging over the pocket-depths 
probability distribution. 
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FIGURE 1.  Schematic diagram of a channel with an idealized rectangular stagnant pocket. 

A rusty pipe has an appreciable fraction of its void space 'dead' filled with 
stagnant fluid (Evans & Kenney 1966). For rivers Young & Wallis (1986) attribute 
all the dispersion to the dead zones, and they find from the skewness of the 
concentration distribution that values of p as large as 0.3 can be appropriate; 
whereas for a man-made (uniform concrete) channel with no dead zones this 
empirical value reduces to 0.15. It is the difference in p-values that can be truly 
attributed to the dead zones. Thus, we can estimate that p = 0.15 for natural 
streams. 

Within any one pocket the concentration of a passive contaminant cI depends 
crucially upon the depth al of that pocket. However, for the main flow the detailed 
p(1) is unimportant (because the pockets are short) and can be averaged out. Thus, 
to distinguish concentrations in the two regions, we define 

c1 for 0 < y < al, 
C = {  c for -a < y <  0. (2.3) 

A major difficulty in the work of Aris (1959) is in the occurrence of two modes of 
averaging : the ensemble averages over pocket-depths probability distribution and 
the cross-sectional averages (over the pocket depths and the main flow). The 
breakthrough which allowed the present work to extend that of Aris was the 
recognition that a composite averaging process, denoted here by a tilde, sufficed. For 
example, the composite cross-sectional area per unit channel depth A is defined as 

A = { /:bdy} = a ( l  +p). (2.4) 

Hence the definition of composite cross-sectional average values includes ensemble 
averages over the pocket-depths probability distribution : 
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Here the conventional cross-sectional averages over the main flow or over the pocket 
depths (separately) are given respectively by 

Note that when p = 0, i.e. no pockets, d = F .  

velocity 
Furthermore, the composite cross-sectionally 

( 2 . 6 ~ )  

( 2 . 6 b )  

averaged value of the longitudinal 

0 for 0 < y < al, 
u ( y )  for - a <  y < 0 ,  

( 2 . 7 ~ )  

(2.7b) is determined by 

which is the bulk velocity of contaminant cloud in the presence of stagnant pockets 
derived by Aris (1959), Okubo (1973) and Valentine & Wood (1977, equation (16 b ) ) .  
Note that i t  is smaller than the main-flow cross-sectional mean velocity u. This 
reduction is due to the involvement of contaminant in the stagnant pockets: the 
larger the mean volume fraction the more time a contaminant spends there. The 
conservation of volume flow along the channel can be expressed as 

u o=-- 
1 + p '  

A n  = constant. (2.8) 

3. Concentration equations and the method of moments 

are : 
in the stagnant pockets (0 < y < al) 

In axes moving with the bulk velocity 0, the equations that we seek to solve 

a, CI - 0 8, C1-ay(Kt  ay Cl) = 0;  ( 3 . 1 ~ )  

in the main flow (--a < y < 0 )  

(3 . lb)  

In principle, the transverse diffusivity K~ inside the pockets may differ from K 

(Chatwin 1973), or from pocket to pocket. The effect of direct longitudinal diffusivity 
has been neglected. Evans & Kenney (1966) showed that, if required, this additional 
dispersive-mechanism term can simply be added to the shear-dispersion coefficient 
D.  

Boundary conditions describing the continuity of transverse flux and the 
continuity of mass conservation at the interface y = 0 are 

c = Cl, ( 3 . 2 ~ )  

(3.2b) 
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(We recall that for the main flow the pocket-depths probability distribution has been 
averaged out.) Zero-flux conditions are chosen on the main-flow axis of symmetry 
and on the pocket boundary so that 

K 1 a y c l  = 0 at y = al, ( 3 . 3 a )  

and K a , C = o  onaA, (3 .3c)  

K a , c  = 0 at y = -a, (3 .3  b) 

where aA is that part of the channel boundary which does not have any stagnant 
pockets. 

The centroid, variance, skewness and kurtosis are direct properties of the first four 
moments of the contaminant concentration distributions. Thus, following Aris 
(1956) ,  we introduce the moments both for the stagnant pockets and for the main 
flow : 

OD 

cln) = I-, xn cL dx, (3 .4a )  

OD 

dn)  = [ xncdx, (3 .4b)  
J -a, 

with the composite cross-sectionally averaged moments 

a, 

M(n)  = / x"ddx, (3 .5 )  
J -m 

and accordingly, we set 

J -m 

m 

r(") = /-mzn(c-6)dr (n = 0,1 ,2  ,... ). 

( 3 . 6 a )  

(3 .66 )  

As before capital letters C, R denote the concentration in both regions and lower-case 
letters the separate contributions. We shall also frequently use U(y) ; however from 
( 2 . 7 ~ )  this has only the main-flow velocity component u(y) since the flow within any 
individual pocket is stagnant. 

Taking moments of the advection-diffusion equations (3.1 a, b) ,  using the boundary 
conditions (3 .2a ,  b) and (3 .3a ,  b) (Smith 1985), we find that the successive composite 
zero-average terms rin), r@) satisfy the hierarchy equations 

with 

a t  y = 0, 
(3 .7c)  
( 3 . 7 4  

with = 0, y = -a, ( 3 . 7 f )  

where the tilde indicates the composite cross-sectional averaging defined in (2 .5 ) .  
Since the intention of this paper is to incorporate the storage mechanism we shall, 

for simplicity, restrict our attention to the special case of a uniform (over the cross- 
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section) initial discharge: a t  t = 0 a unit amount of contaminant is located a t  the 
plane x = 0 (and the equilibrium is attained for the overall trapping and releasing 
rate of contaminant across the interface between the moving and stagnant fluids). 

rjo) = (1) = (2) = ( 3 . 8 ~ )  
Hence, a t  t = 0, 

r l  rl  . . .  = 0, 

r ( o )  = r(l) = = . . .  = 0. (3.8b) 

An important sequel in the method of moments is that  the successive composite 
cross-sectionally averaged term Mcn)(t) evolves in accordance with 

d,M'"' = n(u-o)n'fi-;'. (3.9) 

For the particularly simple initial discharge conditions assumed in (3.8a, b )  a t  t = 0, 
we have M(O) = 1 for t > 0, (3.10a) 

2 

M ( n ) = n  dt'(U-o)R(n-l) ( n = 1 , 2 , 3  ,... ). (3.10 6 )  

It deserves comment that formally (3.7a-f), (3.9) and (3.10a, b) are identical with 
the corresponding result of the conventional method of moments for the case with no 
pockets (Smith 1985, equations (2.4a-c) and (2.3a, b)) by having a tilde in place of 
an overbar. Indeed, what has been achieved through the introduction of the 
composite cross-sectional averaging is the elimination of any explicit occurrence of 
p(Z). Thus, in principle, we can straightforwardly adapt any results of the 
conventional (no-pockets) method of moments. More importantly, we can utilize 
these results to separate the effects of stagnant pockets from those of velocity-shear 
gradients. 

Even with the restriction to  uniform discharges it is a formidable task to  solve 
(3.8a-f) for more than the first few moments (Barton 1983). Fortunately, this 
appears to be all that  is necessary and, for many practical purposes, only the 
asymptotic large-time solutions are needed. Chatwin (1970) showed that a t  large 
times after discharge, in the absence of stagnant pockets, the variance and the 
skewness can be expressed in terms of a single shape function g(y). Here, following 
Chatwin, we derive the asymptotic forms for variance, skewness (and kurtosis) using 
the modified shape function G(')(y). 

s : -  

4. Centroid displacement function 
The use of the composite cross-sectional averaging ensures that the pattern of 

calculation proceeds as in the much more familiar method of moments (Smith 1981 b,  
1985). For the conventional (no-pockets) situation the zeroth-moment solution for a 
uniform initial discharge is trivial : 

(4.1) R(0) = r(0) = 0 

The direct analogy to the with-pockets situation permits us to deduce that 

rjO) = 0 
r(O) = 0 

for 0 < y < al, 
for -a < y < 0. 

R(O) = (4.2) 

Hence, we infer that C(O) remains uniform across the flow and has the constant value 
M(O) = 1 ( 3 . 1 0 ~ ) .  I n  other words, the amount of contaminant in the main flow 
remains (1+/3)-' of the initial quantity released (Okubo 1973). This is also in 
agreement with the result of Valentine & Wood (1977, equation (15)) that the 
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amount of contaminant in each region is proportional to the respective region 
volumes. 

The next ingredient in the method of moments is the centroid position of the 
contaminant cloud. For the conventional case of no pockets the asymptotic solution 
of ( 3 . 7 ~ - f )  with n = 1 has the form 

S(Y)J (4.3) R(1) = r ( l )  = 

where the conventional centroid displacement function g( y) satisfies the transverse 
diffusion equation (Chatwin 1970, equation (1.10) ; Smith 1982, equation (3.9)) 

ay(Kayg) = U-U, with Kayg = 0 on aA, ( 4 . 4 ~ )  

and g = 0. (4.4b) 

Physically, g(y) describes the dependence of the contaminant centroid in any 
filament on its position across the flow (Aris 1956). Alternatively, g(y) is the shape 
factor for longest persisting concentration variants across the flow (Taylor 1953). 

The analogy with the stagnant-pockets situation (a tilde replacing an overbar) 
permits us to infer, for large t ,  that 

The modified centroid displacement 
transverse diffusion equations 

(4.5) 
for 0 < y c a l ,  
for -a < y < 0. 

functions gil)(y), g(’)(y) then satisfy the 

(4.6b) 
( 4 . 6 ~ )  

a , ( ~  a, 9‘”) = 0 - u, with K a, g(’) = 0 , y = - a ,  (4.6d) 

and (4.6e) 

In order to assess the role of stagnant pockets, by observing the forcing terms of 
(4.6d), we now make an important decomposition of G(l)(y), for constant K ~ ,  into 
parts associated with the main-flow velocity u ( y ) ,  the mean volume fraction p, and 
the stagnant-pocket properties : 

I 9 + Pf + E 3 -a < y < 0. (4.7b) 

The conventional centroid displacement function (the main-flow associated term) 
g(y) is defined by (4.4a, b) .  The term associated with the mean volume fraction f(y) 
satisfies the equation 

a,(Ka,f)  = -u, with K a y  f = -ua, y = 0, ( 4 . 8 ~ )  

K a y  f = 0, y = -a, (4.8b) 

and 
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FIGURE 2. The shape factor ( ~ / t k ~ ~ )  (g+pf) profiles across the flow. (a )  Pipe Poiseuille flow ; 
( b )  Couette flow ; (c) plane Poiseuille flow. 
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The effect of p(1) on the centroid position of the contaminant cloud in the main flow 
is given by the stagnant-pocket property term 

- 
This is determined by the constraint G(')(y) = 0 (the necessary solvability condition 
for (4.6~-e) to have a unique solution). Note that E is independent of the shape of 
the main-flow velocity profile u ( y )  and is proportional to the higher-order statistic 
term {Z3} of p(Z). 

If we substitute the result (4.2) into (3.10b) with n = 1, then we find, for large t ,  

= 0. (4.10) 
that 

Hence, in axes moving with the bulk velocity the composite cross-sectionally 
averaged centroid of the contaminant cloud remains a t  the origin. The first moment 
itself has the limiting form 

C(1) R(1) ---- - N @ ( I ) ,  ( y o )  M(O) (4.11) 

so that the centre of mass of the contaminant cloud is distributed according to the 
modified centroid displacement function G(l)( y) . Alternatively, by analogy with the 
case of no pockets, it  can also be referred to as the shape factor. 

Figure 2 (a<) shows the contribution to the shape factor from the main flow g + p f  
as the mean volume fraction P is increased for the three types of flow considered in 
Appendix A. The development of backwards displacements close to the channel 
boundary is due to the condition of continuity of transverse flux a t  the interface 
between moving and stagnant fluids. 

Following the notion that g(y) is the (primary) shift of the conventional main-flow 
centroid between streamlines for the case with no pockets (Aris 1956, equation (24) ; 
Chatwin 1970, equation (1.9)), there is a (secondary) shift /3f(y) associated with the 
mean volume fraction P. This can be attributed to the fact that relative to the new 
reference velocity r? the main flow is slightly faster than before. Thus, in the main 
flow there is a corresponding forwards shift in the centroid displacement. 

5. Shear-dispersion coefficient 
The distinctive feature of the present analysis is that we seek to calculate the effect 

of stagnant pockets on the shear dispersion. We recall that the dispersion process of 
the contaminant is now due to (i) the combined effect of transverse diffusion and 
longitudinal shear velocity in the main flow, (ii) the continuous diffusion exchange a t  
the interface between the moving and the stationary parts of the flow, and (iii) the 
effect of molecular diffusion within the stagnant pockets. 

Continuing to the second moment (i.e. n = Z), (3.10b) becomes 

r 
M(2)  = 2t( U - a)%) + 2 dt'(U - d )  (R") -G(<), (5.1) r 

where we have made use of the asymptotic formulae (4.5) for R@). By analogy with 
the case of no pockets, the coefficient of 2t gives us a formula for the longitudinal 
shear-dispersion coefficient D (Aris 1956, equation (40)) : 

,- 

D = ( U - o ) G ( l { .  
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The important feature of this generalization of Taylor’s (1953) classic result is in the 
use of a tilde instead of an overbar, i.e. conventional instead of composite cross- 
sectional averaging. 

In  the absence of pockets, the positivity of D has been shown by Smith (1981 b,  
equation (5.6)). Here (including the stagnant pockets) it can also be shown to be 
positive. First, we note from (4.6a-e), that 

and 

(5.3a) 

(5.3b) 

Next, by multiplying (4.6a, d )  by gfl)(y) and g(’)(y) respectively, and then integrating 
by parts across the flow, we have 

(5.4a) 

The term for the contribution from the main flow, D ( p ) ,  depends only upon the main- 
flow properties u(y), K ,  and the mean volume fraction p :  

(5.4b) 

Moreover, when p = 0 (there are no pockets), it reduces to Taylor’s (1953) result 
(Smith 1981 b, equation (5.6)). 

The second term of ( 5 . 4 ~ ~ )  involves the stagnant-pocket properties K ~ ,  p and p(Z). 
For constant K ~ ,  we can show that 

(5.44 

This is independent of the main-flow velocity shear distribution u(y) and agrees with 
the approximation given by Chatwin (1973, equation (3.8)) to evaluate the effect of 
a viscous sublayer of height 1. Chatwin estimated that ( 5 . 4 ~ )  contributes up to  20% 
to D. It also reveals that  the mean cube of the stagnant-pocket depths alone affects 
the overall dispersion (see Appendix B). 

An alternative decomposition of &3), using (4.7a, b )  and the constraint G(’)(y) = 0, 
is 

__y 

We see that D(P) consists of two distinct parts, each reflecting a different aspect of 
the dispersion process. As for the conventional case of no pockets, the first term arises 
from the interaction between longitudinal advection by the main-flow velocity shear 
and transverse diffusion, whereas the second term, from (4.8a-c), is the consequence 
of the effect of changed boundary conditions, namely the corrective diffusive 
transverse flux of the contaminant across the interface of the stagnant pockets and 
the main flow. 

Figure 3 shows the contribution from the main flow to the dispersion coefficient 
D(p)  for constant K as an increasing function of p for three special cases of Couette 
flow, pipe and plane Poiseuille flows (see Appendix A). The second term of (5.5) 
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0.1 0.2 

Mean volume fraction, B 

FIGURE 3. The dependence of the shear-dispersion coefficient ( K / ~ ’ u ’ )  D ( p )  upon /3 for Couette flow 
(-), pipe Poiseuille flow (. . . . . .) and plane Poiseuille flow (---). 

rapidly dominates the conventional (Taylor) shear-dispersion prediction. For 
P = 0.2, D ( p )  is almost doubled. 

Similarly, from (4.4a,b) and (4.8a-c), we can obtain an even more revealing 
formula for the total shear-dispersion coefficient D : 

This agrees with and extends the work of Aris (1959). The formula demonstrates the 
individual contributions of the main-flow velocity, the mean volume fraction /3, and 
the higher-order statistics of p(Z) via (17. 

6. Variance 
Here we are concerned with the composite cross-sectionally averaged second 

moment a t  large times after discharge. Although a t  first sight it might seem 
awkward to deal directly with the second term of (5.1), i t  happens, as shown by 
Smith (1981 b) ,  that the integrand is more tractable than the transient R(l). We avoid 
these intermediate mathematical details by using the procedure of the previous 
sections, that the method of moments with stagnant pockets can be treated as a 
generalization of the conventional (no-pockets) method of moments with a tilde in 
the place of an overbar. 

(Chatwin 1970, For the no-pockets case, the final asymptotic formula for 
equation (3.8)) is Mg) = 2t(u -a)  g - 2?. 

Replacing the overbar by a tilde we infer, when there are stagnant pockets, that 
I- 

M g )  = 2t( I T -  [ T )  Q(1) - 2(G(”)2. (6.2) 
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0 

FIGURE 4. The variance ( ~ / % a ~ ) ~ M $ ) ( / 3 )  as a function of d / a 2  with Barton’s (1983) exact results for 
/3 = 0. .,3t,(/?) after which time the asymptotic result (6 .4b)  becomes pertinent. (a) Pipe Poiseuille 
flow ; (b) Couette flow ; (c) plane Poiseuille flow. 
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The first term represents the balance between the longitudinal stretching effect of the 
velocity shear and the transverse diffusion which, by acting together, increase M $  
steadily with time. In contrast, the second term is time-independent, embodying the 
overall effect of the early stages of dispersion on the variance, when large variations 
in the conce&ation exist across the flow rather than some equilibrium state. 

The - 2 ( P ) ) '  term makes the asymptotic variance (6.2) less than 2tD. In  the 
absence of stagnant pockets, this deficit variance was first pointed out by Chatwin 
(1970). Its  negative contribution can be attributed to the initial inefficiency of the 
shear dispersion process, and in the Gaussian approximation (Smith 1982) its 
influence upon the concentration distributions only decays as t-i. Next, using the 
decompositions (4.7a, b )  for G(l)(y), we can decompose ic"')z into terms associated 
with the main-flow property, the stagnant-pocket property and the pocket-depths- 

U H  2Ef statistics cross-term: I--y - 
(G"))' = (G'l))' (P)  +----- 

( l + p ) ' + F - T p  

the main-flow-related contribution term is given by 

( 6 . 3 ~ )  

(6.3b) 

and the stagnant-pocket property term (independent of the shape of the main-flow 
velocity profile u(y)) is 

GH = [6( 1 + p )  {Z5} - 5{6}*] .  ( 6 . 3 ~ )  
u'a4 

1 + p)z 
The asymptotic composite cross-sectional averaged variance (6 .2)  becomes 

where the main-flow-related contribution to the variance is defined by 

( 6 . 4 ~ )  

(6 .4h)  

In  this definition the stagnant-pocket property terms E ,  H ,  and the higher-order 
pocket-depths statistics cross-term Efcontributions have been excluded. (This is to 
emphasize the role of the mean volume fraction /3 without our needing to involve 
particular p(Z).) 

Figure 4(a-c) shows the variance M$)(P) as functions of p and t for the three type 
of flows considered in Appendix A. The two elements of (6.4b) can clearly be seen, the 
eventual linear growth but with a delayed effective starting time. 

7.Decay rate 
Although the above analysis does illuminate the effects of stagnant pockets upon 

contaminant dispersion, i t  does not provide a test far the accuracy of the asymptotic 
large-time approximation. To do this we introduce Taylor's (1953) concept of the 
time of decay to measure the longest persisting transverse variation of concentration, 
which is associated with the value of the decay rate, A. Smith (1981 a, equation (5.9)), 
for the case with no pockets, formulated the decay rate as 
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FIQURE 5. The decay rate ( u ~ / K )  h(P) for pipe Poiseuille flow (. t.. . .), plane Poiseuille flow (---) and 
Couette flow (-) as a function of p. 

The obvious generalization is 

wit,h the t)erm for the contribution from the main flow 

(7.3) 

The e-folding time related to the main flow, te( /3) ,  for the free decay of the 
transverse concentration variations can be defined as 

(7.4) 

In  the absence of stagnant pockets, the cross-sectional mixing can he regarded 
as having been established after about 3te. It is the continual regeneration of 
concentration variations in regions of high concentration gradient which prolongs 
this influence of the earlier stages of dispersion. 

Figure 5 shows the decay rate h(P) for constant K as a function of ,8 in pipe and 
plane Poiseuille flows and Couette flow (see Appendix A). As we might expect, h(P) 
is a monotonic decreasing function of P. Increasing the pocket depth a1 increases the 
distance over which the contaminant has to be diffused, thus requiring a greater 
time. It must be remembered that this also means greater P, which makes the effect 
on the bulk-contaminant cloud velocity less significant. Indeed, the decay rate is 
reduced by a t  least one-fifth when /3 = 0.2. Thus, the addition of stagnant pockets 
delays the occurrence of the ‘Taylor regime’ for which the rate of growth of the 
variance is linear with time (Valentine & Wood 1977). 
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8. Third moment 
A linear growth of the variance with t is not sufficient to ensure that the 

distribution of contaminant concentration is Gaussian. Nordin & Troutman (1980) 
have emphasized the persistence of skewness in the observed concentration 
distributions. Hence, we shall pursue the analysis to calculate the deviations from 
Gaussianity as measured by skewness and kurtosis. Such deviations are not described 
by the longitudinal diffusion equation (Chatwin 1980). 

In the conventional case with no pockets, Chatwin (1970, equation (3.9)) has 
shown, for large t ,  that the cross-sectional average third moment can be formulated 
as 

By analogy with g(y), the conventional variance function g(2)(y) satisfies the equation 
(Chatwin 1970, equation (2.12) ; Smith 1982, equation (3.11)) 

ay(Kayg'2') = ( u - ( u - a ) g ,  with = 0 on aA, ( 8 . 2 ~ )  

and g(2) = 0. (8.2b) 

The necessary modifications of (8.1) for the introduction of stagnant pockets 

__ 
M',3' = Bt(~-tZ)g'- 12g5J2). (8.1) 

- 

are I- 

Here, by analogy with (4 .6~-e)  for G(')(y), the modified variance function G(2)(y) 
satisfies the equations 

a y ( K i  ay gl") = 0gi') + (u  - 0) @'), ( 8 . 4 ~ )  

with Ki ay gj2) = 0, y = al, (8.4b) 

M g )  = 6t(U- U )  (G'l))' - 12G'1'G'2'. (8.3) 

( 8 . 4 ~ )  
(8.4d) 

a y ( K  a, 9'") = (0 -u)  9'') + ( U -  0)  G'l), (8.4e) 

with K a y  g") = 0 , y=-a, (8.4f 1 
and G(2) = 0. (8.4g) 

N 

In  order to evaluate the effect of the stagnant pockets, using decompositions 

(4.7u, b) for G(l)(y), we separate (U - 0) (GC1)); into terms associated with the main- 
flow and the stagnant-pockets properties, and the pocket-depths statistics cross- 

where the term for the contribution from the main flow is given by 

(1  +p)4(h-0)(@1))'(~) = (ZL-~)(g+Pf)'+p(U(g+pf)*-a~~), (8.5b) 

and the stagnant-pocket property term (independent of the distribution of main-flow 
velocity ~ ( y ) )  is 

2a2a4 
L =  [-3(1 +p){Z5}+5{Z3)']. 

45~;(1  +p)2 ( 8 . 5 ~ )  

As pointed out in $6, this separation into p-, L- and E-terms is to emphasize the role 
of the mean volume fraction 1, without our needing to involve any particular 
P ( 0 .  
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FIGURE 6. The values of ( K ' / U ~ ~ ~ )  (U - V )  (G(")'(p) as a function of /3 for pipe Poiseuille flow (. . . . . .), 
Couette flow (-) and plane Poiseuille flow (---). 

I 

Figure 6 shows the dependence of (U - 0) (GC1))'(p) for constant K, upon the mean 
volume fraction p for pipe Poiseuille flow, Couette flow and plane Poiseuille flow (see 
Appendix A).  The domination of the main-flow velocity profiles is clearly exhibited 
for small p. However, this effect is rapidly suppressed with increasing p, and the 
general trend of increasing values of (8 .5b )  is evident with p = 0.2. 

Since the algebra becomes unwieldly, it  is desirable to eliminate the occurrence of 
G(2)(y) in favour of some more readily calculated function. In the absence of pockets, 
Chatwin (1970, appendix B) showed that 

__ 
gg'2' = (u-a)Ig,  (8.6) 

a , (Ka , I )  = -g, with K a , I  = 0 on aA, (8.7a) 

where the additional auxiliary function I(y) satisfies the equation (Smith 1982, 
equation (3.11)) 

and I = 0 .  (8.76) 

Again, by the introduction of stagnant pockets, we have the equivalent form of 
(8.6) as 

where the modified auxiliary function P) satisfies the equations 

7 
G(l)G(2) = ('u - 8) $(l)C;r(<, 

a,(K I a , 10) ) - - - g, (1) withKlayIil) = 0, y = -al, 

(8.8) 

(8.9a) 

(8.96) 
(8.9C) 

and 
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Note that, from (4.6-a-e) and (8.9-a-e), it  is straightforward to derive the identity 

367 

(6- 0) S('i = (Q(1))z. (8.10) 

Next, in order to analyse the effect ofp(Z), by analogy with (4.7a, b)  for G ( l ) ( y ) ,  and 
for constant K ~ ,  we are led to decompose P ) ( y )  as 

E -f 

u 

K; 24 
--(+y4-&dy3+i(aZ)3y), 0 < y < aZ, (8.11a) 

(I+PJ(,)+EJ(,)+H, --a c y < 0. (8.1lb)  

The conventional auxiliary function (the term associated with the main flow) I(y) is 
defined in (8 .7-a ,b) .  The term associated with the main volume fraction J,,,(y) 
satisfies the equation 

i3&cayJ(,,) = -f, with K ~ , J ( , ,  = - - a ,  y = 0,  (8.12 a)  

K a y J ( l )  = 0, y =--a, (8.12b) 

and G = -1(o)-PJ(l)(o). ( 8 . 1 2 ~ )  

The term associated with the stagnant-pocket-depth statistic J,,,(y) satisfies 

a&ca,J(,,) = -1 ,  with K ~ ~ J ( ~ )  = --a, y = 0, '3a) 
K a y J ( 2 )  = 0, y =--a,  (8.13b) 

and .iiG = ( 1  + p ) f - P q , , ( o ) .  (8.13 c) 

The effect of p(2) is represented by the stagnant-pocket-property term H ( 6 . 3 ~ ) .  
However, this can also be determined by the constraint 

9%) = 0. 

As in the case for E (4.9), H is independent of the shape of main-flow velocity profile 
u(y) and is proportional to the higher-order statistic terms (Z5) and {Z3) of p(Z). 

Using the decompositions (4.7-a, b)  and (8.11 a, b ) ,  and from (8.8), the main-flow- 
related contribution to G(l)G 7 2, is given by - 

(1  +P)4GG(1)Q(2)(P) = ( U - - ) ( Y + P f ) ( I + P J ( I ) )  + P [ W + P f )  ( I + P J ( l ) ) - u P J .  
(8.14) 

Hence, we can denote the main-flow-related contribution to the composite cross- 
sectionally averaged third moment, for large t ,  by analogy with, (6 .4b)  for M$)(P) ,  
as 

(1  +P)*M$)(p) = 6t((u - u)  (g  + Pf12 +P[u(g + Pf )"aPI) 

- 12((u - a) (9 + Pf 1 (1 + PJ(1,) +P[u(s + Pf 1 (1 +PJ( l ) )  - u.fJ,,,I). (8.15) 

Figure 7 (a+) shows the third moment M g ) ( p )  with increasing P for the three types 
of flow considered in Appendix A. The gradual release of the trapped contaminant 
helps to increase the contribution from the main flow to the skewness (see $9). 
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FIGURE 7. The third moment ( ~ / a a ~ ) ~ M g ’ ( / 3 )  as a function of ~ t / a ’  with Barton’s (1983) exact 
results for /3 = 0. 0 ,  3t,(P) after which time the asymptotic result (8.15) becomes pertinent. (a )  
Pipe Poiseuille flow ; ( b )  Couette flow ; ( c )  plane Poiseuille flow. 
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9. Skewness 

the relationship 
The skewness S indicates the departure of a curve from symmetry. It is defined by 

M(3) 

(9.1) S = -  

and by combining together the asymptotic results (8.3) for M Z )  and (6.2) for M $ ,  we 
can infer that  the skewness S has the asymptote 

('(2));' 

I 

6t(U-6)(G(')P 

[2t( U - 6) G(')]; 
S -  I , 

which decays a t  the slow rate t-i (Aris 1956; Chatwin 1970). Note that all quantities 
are given explicitly in terms of the modified shape function G(')(y), and the velocity 
profile U(y). The equivalent formula for the case without stagnant pockets is given 
by Smith (1981 b, appendix A). Moreover, as was noted by Smith, i t  is independent 
of any initial contaminant distribution. 

Using the results (8.5a-c) and (5 .4~-c) ,  we can separate the higher-order terms for 
the pocket-depths statistic from (9.2), and redefine the contribution to  skewness from 

(9.3) 

In  the absence of stagnant pockets, the skewness can be positive (Ark 1956, 
equation (27)), identically zero (Barton 1983, equation (4.2b)), or even negative 
(Jayaraj & Subramanian 1978, fig. 13). As pointed out by Smith (1981a), the 
tendency to develop positive or negative skewness can be related to whether a 
smaller fraction of the flow is fast or slow moving as the tails of the contaminant 
distribution are associated with these regions. The presence of stagnant pockets 
enhances the faster-moving central region (figure 2 a-c), hence the convective 
skewness is gradually overshadowed by the trapped contaminant in the tail of the 
concentration distribution. The second term in the numerator of (9.3) dominates (see 
figure 6), and for large p, S(p) increases as @. 

The positive skewness means a rapid surge of concentration when the contaminant 
arrives a t  the monitoring position, followed by a more gradual decay. Hence, the 
concentration peak will be displaced to the left of the centroid displacement (Okubo 
1973, $3) .  As the contaminant moves downstream, transverse corrective fluxes are 
generated which remove contaminant to the pockets at the front and unload 
contaminant into the main flow a t  the rear. 

10. Fourth moment and the kurtosis 

averaged fourth moment M ( 4 )  is finally found, for large t ,  to be 
After some algebra and omitting lengthy details, the composite cross-sectionally - 

M',4)-- 3(Mg))* = 24tS4) + 1 2 [ m I z  - 24(G(*))' - ,- 

+ 2 4 ( U - ~ ) G ( ~ G " ) 4 ( " - 4 8 ( C ' - ~ ) 4 ( 1 ) G ( ~ ,  (10.1 a)  
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As pointed out by Chatwin (1970, this eventually grows linearly with time. Again, 
the time-dependent part of (10.1 a)  does not depend upon the initial discharge non- 
uniformity. 

Chatwin (1980) proposed an alternative means of classifying longitudinal 
dispersion, which demanded that not only the skewness but also the kurtosis ought 
to  be calculated or inferred from the observed concentration profiles. For if the 
concentration distribution were exactly Gaussian, both skewness and kurtosis would 
be identically zero. Thus, any approach to  Gaussianity can be assessed by 
determining how these quantities decrease as functions of measuring position (or 
time). 

The kurtosis (spikiness) K is defined by 

hence i t  has the asymptote 
24tK(4) 

K =  

[2t( U - 8 )  G('i]2' 

(10.2 a) 

(10.2 b )  

which decays a t  the rate t-l. Thus, at large time, K is less important than S. 
The usefulness of (10.2 b )  depends upon the ease with which we can manipulate the 

modified shape function G(l)(y). It deserves emphasis that all quantities in (10.2 6 )  can 
be given explicitly in terms of integrals involving G(')(y), the diffusivities K~ and K ,  

and the velocity profile U ( y ) .  From (8.4ay.), we can derive 

(1 +p)  (U - 0)  dy'[( d - u) g(') + (U - d )  Gci;] 

This enables us to rewrite (1O. lb)  and hence, the kurtosis (10.2b) in terms of 
G(f:(g). 

> Thus, the contribution from the main flow to the kurtosis can be defined as 

(10.44 

with 

(10.4b) 

The negative values of (10.4b) are shown in figure 8 for constant K with p for the three 
velocity profiles considered in Appendix A. However, for large P, the kurtosis IK(p)I 
increases linearly with P. 



The effect of dead zone8 on longitudinal dispersion 37 1 

0.2 Mean volume fraction, ,/3 
I 

FIQURE 8. The values of ( K ~ / ~ ~ ~ ) K ( ~ ) ( P )  as a function of P for pipe Poiseuille flow (. . . . . .), plane 
Poiseuille flow (---) and Couette flow (-). 

11. Mean concentration distribution 
Although the widely used method of moments gives a great deal of information 

about the distributions of contaminant concentration across the flow as it disperses, 
nevertheless it has the disadvantage that it does not give a direct expression for C 
nor c. The details of the approach to normality of the mean concentration have been 
investigated by Chatwin (1970), who proposed an Edgeworth series expansion for 
i;. 

with the longitudinal coordinate 
x - o t  X = -  
(M(2,)t ' 

(11.1) 

(11.2)  

and H 3 ,  H ,  and H ,  are Hermite polynomials defined by 

H , ( X )  = x 3 - 3 x ,  (1 1 . 3 ~ )  

H 4 ( X )  = X 4 - 6 X 2 + 3 ,  (1  1.3 b )  

H , ( X )  = X 6  - 15X4 + 45X2 - 15. ( 1 1 . 3 ~ )  

The complete Edgeworth series is infinite, and it involves all the cumulants, of 
which 8 and K are the first two. The series is believed to be asymptotic rather than 
convergent ; unfortunately the sum of a finite number of terms of the series may give 
negative values (figure 9a) ,  particularly near the tails where higher-order terms 
decrease in a somewhat irregular manner. This tendency is expected because, when 
the direct longitudinal diffusion is neglected, the concentration cannot be non-zero 
upstream of a point moving with the maximum velocity, nor downstream of a point 
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1 

1 

Longitudinal coordinate, ~ X / i i d  

FIGURE 9. The Chatwin’s (1970) Edgeworth series mean concentration 6(,4) profiles as a function 
of KX/iia2 at 6t,(p = 0) after discharge. ( a )  Pipe Poiseuille flow ; ( b )  Couette flow ; (c )  plane Poiseuille 
flow. 
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moving with the minimum velocity. Hence, 6 must fall to zero more rapidly than the 
Gaussian profile. From (9.2) and (10 .2b ) ,  the departure from the Gaussian profile is 
dominated, for large t ,  by the skewness. Smith (1982) conjectured that by neglecting 
K not only is (1 1.1) more accurate at large time, but also the combination of H ,  and 
H ,  ensures that the predicted concentrations are positive in the tails of contaminant 
distributions, except when the skewness is quite marked. For this reason, and for 
simplicity, figure 9 (a+) has been calculated this way. 

The noteworthy features of figure 9(a-c) as ,8 is increased are the lower 
concentration, the displaced (slow-moving) peaks and the extended tail. 

12. Concluding remarks 
We have generalized the work of Aris (1959) so that direct predictions for the first 

four moments of contaminant concentration distributions in the presence of dead 
zones are made in the manner advocated by Aris’s (1956) conventional (no-pockets) 
method of moments. The mathematically preferred composite cross-sectional 
averaging process results are simpler in character as well as in mathematical form. 
The decompositions (4.7 a ,  b )  for the centroid displacement function G(l)(y) are 
straightforward to evaluate, and have been used to illuminate several facets of 
dispersion process. Furthermore, the decomposition (5.6) of the longitudinal 
dispersion coefficient reveals that the shear-dispersion coefficient D can be vastly 
increased by the introduction of dead zones. The asymptotic formulae (9.3) and 
(10.4a, 6 )  demonstrate the individual role of the shear velocity, and the mean volume 
fraction ,8 on the main-flow-related contribution to the skewness and to the kurtosis 
respectively. 

The general conclusions obtained are believed to  be applicable to  real flows. 
Natural streams are subject to a long-term build-up of plant material, especially on 
the side boundary. This suggests that the flow field can be divided into main-flow and 
dead-zone regions, since the velocity fluctuations fall to zero and the intensity of 
lateral mixing decreases rapidly as the dead zones are approached. Here, dead zones 
may have circulating eddies; however so long as there is no net downstream 
advection within dead zones, we could treat them as stagnant pockets as far as the 
above analyses are concerned. The work of Young & Wallis (1986) suggests that 
values of p of the order of 0.15 are appropriate to real rivers. The results shown in 
figures 3 and 6 reveal the marked influence upon the spreading rate and the skewness 
when the dead-zones mean volume fraction has such large values. 

I wish to thank my research supervisor, Dr R. Smith, who suggested the problem 
and provided continual advice, support and encouragement throughout the work. I 
should also like to thank the referees for their helpful comments. The financial 
support of an Overseas Research Student award is gratefully acknowledged. 

Appendix A. 
I n  the absence of stagnant pockets, the skewness is very sensitive to  the main-flow 

velocity profiles. Firstly, we consider the dispersion of a passive contaminant with 
constant molecular diffusivities K~ = K in the Couette flow. The linear main-flow 
velocity profile takes the form 

Centroid displacement and other auxiliary functions 

u(Y)=2.ii  1-- forO< Y < a ,  (A 1) ( 3 
where we have resealed Y = y + a ,  and a is the channel depth. 
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To quantify the effect of the mean volume fraction p we need to calculate the 
auxiliary functions defined in (4 .4a,  b )  and (4 .8a-c)  

g ( Y )  = @ [ 1 - - 6 ( f J + 4 ( z y ] ,  12K 

f ( Y ) = - [ - - + 1 - 3  ua2 p 
3K I + / ?  

Next, from (8.7a, b ) ,  (8.12a-c) and (8.13u-c), we obtain 

I ( Y )  = I[ 1 20K2 1-5 ( 3 + 5  ( ; I - 2  (31, 
J,,,( Y )  = $[ 3 - 10 (:r + 5 (:r - 

+ 1 8 0 ~ ~ (  ua4 1 +p) p [ i 9 - 3 0 ( : Y + z ] ,  ( A 3 b )  

It is now straightforward to evaluate all the necessary quantities for the contribution 

from the main-flow such as I)(@), h(,8), ( U - 0 )  (G(I)F(@) and K(4)(/3). 
The widely studied example of pipe Poiseuille flow is exceptional in that the 

dominant contribution to the skewness is anomalously small but positive. For 
laminar flow in a circular pipe of radius a, with constant molecular diffusivities 
K~ = K ,  the parabolic main-flow velocity profile is 

where we have resealed r = y + a .  The circular symmetry means that we can restrict 
our attention to purely radial variation and, systematically, we are dealing with 
twice as much boundary per unit cross-sectional area. For example, the continuity 
of transverse flux boundary condition (3.2b) a t  the pipe wall r = a becomes (Aris 
1959) 

and subsequently, the factor two should be presented in any expression related to the 
cross-sectional area. 

To quantify the effect of the mean volume fraction /3 we need to evaluate the 
auxiliary functions defined in (4 .4a,  b) and (4.8a-c) : 
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Next, from (8.7a, b) ,  (8.12a-c) and (8.13a-c), we derive 

These enable us to calculate all the necessary quantities contributed by the main- 
flow. 

In  the absence of stagnant pockets the contaminant concentration distribution in 
plane Poiseuille flow with constant molcular diffusivities K~ = K has a negative 
skewness (Jayaraj & Subramanian 1978). The main-flow velocity profile takes the 
form 

where we have rescaled Y = y+a, and 2a is the separation channel width. 

auxiliary functions defined in (4.4a, b )  and (4.8a-c) : 
To quantify the effect of the mean volume fraction p we need to  determine the 

Next, from (8.7a, b ) ,  (8.12a-c) and (8.13a-c), we derive 

Again from (A 8a,  b)  and (A 9a-c) ,  we: can determine all the necessary quantities 
contributed by the main flow. 

Appendix B. The one-sided Gaussian stagnant-pocket depths 
Naturally, the mean volume fraction ,i3 has a more direct physical interpretation 

than any other stagnant-pockets property, but there is also more complex 
dependence on the statistics of p ( l )  as was first pointed out by Aris (1959). For 
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illustration, we consider a simple case for which the pocket depths are distributed 
according to the one-sided Gaussian with the mean volume fraction B as its 

{Izn+’} = / ~ Y L ! ( ~ P ’ ) ~  n = 1 , 2 , 3 , .  . . . 

The factorial stems from the sensitivity of the higher moments to the occasional deep 
pocket. 

The stagnant-pocket property term E can increase the value of D ( p )  as much as 
15 % for the pipe Poiseuille flow with P = 0.2. Similarly, p(Z) alone contributes 24 % 

to (G(1))2(/?), whereas the stagnant-pocket property term H contributes a further 
18%. Thus, the additional decreasing of the decay rate h(P) due to the pocket- 
depths statistics cross-term ( 6 . 3 ~ ~ )  amounts to  more than 19% for the one-sided 
Gaussian stagnant-pocket depths with p = 0.2. 

Although the stagnant-pocket property term L contribution is always negative, as 
is the p(Z)-related contribution for the pipe Poiseuille flow, provided P < 0.41, for 
/? = 0.2 the combination of these terms is still not enough to exceed the positive 

main-flow-related contribution (U - 0) (G(l))’(p). The L-term reduces its value by 
42 %, and the one-sided Gaussian stagnant-pocket depths term reduces it further by 

- 

16%. 
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